3.222 \(\int (a+a \sec (c+d x))^n \tan (c+d x) \, dx\)

Optimal. Leaf size=43 \[ -\frac{(a \sec (c+d x)+a)^{n+1} \text{Hypergeometric2F1}(1,n+1,n+2,\sec (c+d x)+1)}{a d (n+1)} \]

[Out]

-((Hypergeometric2F1[1, 1 + n, 2 + n, 1 + Sec[c + d*x]]*(a + a*Sec[c + d*x])^(1 + n))/(a*d*(1 + n)))

________________________________________________________________________________________

Rubi [A]  time = 0.0413094, antiderivative size = 43, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105, Rules used = {3880, 65} \[ -\frac{(a \sec (c+d x)+a)^{n+1} \, _2F_1(1,n+1;n+2;\sec (c+d x)+1)}{a d (n+1)} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^n*Tan[c + d*x],x]

[Out]

-((Hypergeometric2F1[1, 1 + n, 2 + n, 1 + Sec[c + d*x]]*(a + a*Sec[c + d*x])^(1 + n))/(a*d*(1 + n)))

Rule 3880

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Dist[(d*b^(m - 1)
)^(-1), Subst[Int[((-a + b*x)^((m - 1)/2)*(a + b*x)^((m - 1)/2 + n))/x, x], x, Csc[c + d*x]], x] /; FreeQ[{a,
b, c, d, n}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]

Rule 65

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)*Hypergeometric2F1[-m, n +
 1, n + 2, 1 + (d*x)/c])/(d*(n + 1)*(-(d/(b*c)))^m), x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Inte
gerQ[m] || GtQ[-(d/(b*c)), 0])

Rubi steps

\begin{align*} \int (a+a \sec (c+d x))^n \tan (c+d x) \, dx &=\frac{\operatorname{Subst}\left (\int \frac{(a+a x)^n}{x} \, dx,x,\sec (c+d x)\right )}{d}\\ &=-\frac{\, _2F_1(1,1+n;2+n;1+\sec (c+d x)) (a+a \sec (c+d x))^{1+n}}{a d (1+n)}\\ \end{align*}

Mathematica [A]  time = 0.0421604, size = 43, normalized size = 1. \[ -\frac{(a (\sec (c+d x)+1))^{n+1} \text{Hypergeometric2F1}(1,n+1,n+2,\sec (c+d x)+1)}{a d (n+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])^n*Tan[c + d*x],x]

[Out]

-((Hypergeometric2F1[1, 1 + n, 2 + n, 1 + Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(1 + n))/(a*d*(1 + n)))

________________________________________________________________________________________

Maple [F]  time = 0.317, size = 0, normalized size = 0. \begin{align*} \int \left ( a+a\sec \left ( dx+c \right ) \right ) ^{n}\tan \left ( dx+c \right ) \, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^n*tan(d*x+c),x)

[Out]

int((a+a*sec(d*x+c))^n*tan(d*x+c),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )}^{n} \tan \left (d x + c\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^n*tan(d*x+c),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^n*tan(d*x + c), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (a \sec \left (d x + c\right ) + a\right )}^{n} \tan \left (d x + c\right ), x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^n*tan(d*x+c),x, algorithm="fricas")

[Out]

integral((a*sec(d*x + c) + a)^n*tan(d*x + c), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a \left (\sec{\left (c + d x \right )} + 1\right )\right )^{n} \tan{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**n*tan(d*x+c),x)

[Out]

Integral((a*(sec(c + d*x) + 1))**n*tan(c + d*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )}^{n} \tan \left (d x + c\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^n*tan(d*x+c),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^n*tan(d*x + c), x)